Expression of CD133 on leukemia-initiating cells in childhood ALL

Author:

Cox Charlotte V.12,Diamanti Paraskevi12,Evely Roger S.3,Kearns Pamela R.4,Blair Allison12

Affiliation:

1. Bristol Institute for Transfusion Sciences, Bristol;

2. Department of Cellular and Molecular Medicine, University of Bristol, Bristol;

3. Bristol Haematology and Oncology Centre, Bristol; and

4. Division of Reproductive and Child Health, University of Birmingham, Birmingham, United Kingdom

Abstract

Abstract Optimization of therapy for childhood acute lymphoblastic leukemia (ALL) requires a greater understanding of the cells that proliferate to maintain this malignancy because a significant number of cases relapse, resulting from failure to eradicate the disease. Putative ALL stem cells may be resistant to therapy and subsequent relapses may arise from these cells. We investigated expression of CD133, CD19, and CD38 in pediatric B-ALL. Cytogenetic and molecular analyses demonstrated that karyotypically aberrant cells were present in both CD133+/CD19+ and CD133+/CD19− subfractions, as were most of the antigen receptor gene rearrangements. However, ALL cells capable of long-term proliferation in vitro and in vivo were derived from the CD133+/CD19− subfraction. Moreover, these CD133+/CD19− cells could self-renew to engraft serial nonobese diabetic–severe combined immunodeficient recipients and differentiate in vivo to produce leukemias with similar immunophenotypes and karyotypes to the diagnostic samples. Furthermore, these CD133+/CD19− ALL cells were more resistant to treatment with dexamethasone and vincristine, key components in childhood ALL therapy, than the bulk leukemia population. Similar results were obtained using cells sorted for CD133 and CD38, with only the CD133+/CD38− subfraction demonstrating xenograft repopulating capacity. These data suggest that leukemia-initiating cells in childhood B-ALL have a primitive CD133+/CD19− and CD38− phenotype.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3