Most Acute Myeloid Leukemia Progenitor Cells With Long-Term Proliferative Ability In Vitro and In Vivo Have the Phenotype CD34+/CD71−/HLA-DR−

Author:

Blair A.1,Hogge D.E.1,Sutherland H.J.1

Affiliation:

1. From the Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver Hospital and Health Sciences Centre, and the Department of Medicine, University of British Columbia, Vancouver, BC, Canada.

Abstract

Abstract Acute myeloid leukemia (AML) occurs as the result of malignant transformation in a hematopoietic progenitor cell, which proliferates to form an accumulation of AML blasts. Only a minority of these AML cells are capable of proliferation in vitro, suggesting that AML cells may be organized in a hierarchy, with only the most primitive of these cells capable of maintaining the leukemic clone. To further investigate this hypothesis, we have evaluated a strategy for purifying these primitive cells based on surface antigen expression. As an in vitro endpoint, we have determined the phenotype of AML progenitor cells which are capable of producing AML colony-forming cells (CFU) for up to 8 weeks in suspension culture (SC) and compared the phenotype with that of cells which reproduce AML in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. AML cells were fluorescence-activated cell sorted (FACS) for coexpression of CD34 and CD71, CD38, and/or HLA-DR and the subfractions were assayed in vitro and in vivo at various cell doses to estimate purification. While the majority of primary AML CFU lacked expression of CD34, most cells capable of producing CFU after 2 to 8 weeks in SC were CD34+/CD71−. HLA-DR expression was heterogeneous on cells producing CFU after 2 to 4 weeks. However, after 6 to 8 weeks in SC, the majority of CFU were derived from CD34+/HLA-DR− cells. Similarly, the majority of cells capable of long-term CFU production from SC were CD34+/CD38−. Most cells that were capable of engrafting NOD/SCID mice were also CD34+/CD71− and CD34+/HLA-DR−. Engraftment was not achieved with CD34+/CD71+ or HLA-DR+subfractions, however, in two patients, both the CD34+and CD34− subfractions were capable of engrafting the NOD/SCID mice. A three-color sorting strategy combining these antigens allowed approximately a 2-log purification of these NOD/SCID leukemia initiating cells, with engraftment achieved using as few as 400 cells in one experiment. Phenotyping studies suggest even higher purification could be achieved by combining lack of CD38 expression with the CD34+/CD71− or CD34+/HLA DR− phenotype. These results suggest that most AML cells capable of long-term proliferation in vitro and in vivo share the CD34+/CD71−/HLA-DR− phenotype with normal stem cells. Our data suggests that in this group of patients the leukemic transformation has occurred in a primitive progenitor, as defined by phenotype, with some degree of subsequent differentiation as defined by functional assays.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 203 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3