Affiliation:
1. From the Children's Cancer Institute Australia for Medical Research, Sydney, Australia; and the University of New South Wales, Sydney, Australia.
Abstract
AbstractGlucocorticoids are among the most effective agents used in the treatment of childhood acute lymphoblastic leukemia (ALL), and patient response to treatment is an important determinant of long-term outcome. Despite its clinical significance, the molecular basis of glucocorticoid resistance in lymphoid malignancies is still poorly understood. We have recently developed a highly clinically relevant experimental model of childhood ALL, in which primary childhood ALL biopsies were established as xenografts in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. The in vivo and in vitro responses of a panel of these xenografts to the glucocorticoid, dexamethasone, reflected the outcome of the patients from whom they were derived. In this report we show that glucocorticoid resistance in B-cell precursor (BCP) ALL xenografts was not due to down-regulation of the glucocorticoid receptor (GR) nor to defective ligand binding of the GR. Moreover, dexamethasone-induced GR translocation from the cytoplasm to the nucleus was comparable in all xenografts. However, glucocorticoid resistance was associated with profoundly attenuated induction of the BH3-only proapoptotic protein, Bim, when xenograft cells were exposed to dexamethasone. These results show that dexamethasone resistance in BCP ALL xenografts occurs downstream of ligand-induced nuclear translocation of the GR, but upstream of Bim induction.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献