Knockdown of G1P3 inhibits cell proliferation and enhances the cytotoxicity of dexamethasone in acute lymphoblastic leukemia

Author:

Zou Liping1,Liu Zhirui2,Li Xueer2,Liu Liping3,Zhu Ying14

Affiliation:

1. Department of Blood Transfusion, First Affiliated Hospital of Gannan Medical University , Zhanggong District , Ganzhou , Jiangxi Province, 341000 , China

2. Human Aging Research Institute (HARI), Nanchang University , Nanchang , Jiangxi Province, 330031 , China

3. Department of Hematology, First Affiliated Hospital of Gannan Medical University , Ganzhou , Jiangxi Province, 341000 , China

4. Human Aging Research Institute (HARI), School of Life Science, Nanchang University , Nanchang , Jiangxi Province, 330031 , China

Abstract

Abstract Drug resistance contributes to treatment failure and relapse in acute lymphoblastic leukemia (ALL). G1P3 (also known as IFI6, interferon, alpha-inducible protein 6) has been regarded as an antiapoptotic protein in myeloma cells and contributes to chemoresistance in breast cancer. However, the role of G1P3 in the proliferation and chemosensitivity of ALL is largely unknown. Data from colony formation and bromo-deoxyuridine (BrdU) incorporation assays showed that siRNA-mediated downregulation of G1P3 repressed cell proliferation of glucocorticoids-resistant human leukemic cells (CEM-C1), while overexpression of G1P3 promoted the cell proliferation. Cell apoptosis of CEM-C1 was suppressed by G1P3 overexpression accompanied by a decrease in cleaved caspase-3 and caspase-9. Knockdown of G1P3 increased protein expression of cleaved caspase-3 and caspase-9 to promote the cell apoptosis of CEM-C1. Moreover, silencing of G1P3 reduced cell viability and promoted cell apoptosis of CEM-C1 exposed to dexamethasone. The proapoptotic protein B-cell lymphoma 2 interacting mediator of cell death (Bim) was enhanced by the interference of G1P3 in CEM-C1. Silencing of Bim attenuated G1P3 interference-induced decrease in cell viability and increase in cell apoptosis in CEM-C1 exposed to dexamethasone. Conclusively, knockdown of G1P3 inhibited cell proliferation of ALL and sensitized glucocorticoid-resistant ALL cells to dexamethasone through upregulation of Bim-mediated cell apoptosis.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3