Affiliation:
1. From the Institute of Biochemistry I/Center for Drug Research, Development, and Safety (ZAFES) and the Institute of Clinical Pharmacology/ZAFES, Johann Wolfgang Goethe-University of Frankfurt, Germany.
Abstract
Programmed cell death is vital for a number of pathophysiologic settings. Apoptotic cells are rapidly engulfed by phagocytes (ie, macrophages), which in turn acquire an anti-inflammatory phenotype known as alternative activation or the M2-type. Here we show that interaction of apoptotic cells with macrophages attenuates cell death pathways in the latter. Protection of human macrophages required phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinase 1/2 (ERK1/2), and Ca2+ signaling, and correlated with Bcl-XL and Bcl-2 up-regulation as well as Ser136-Bad phosphorylation. Unexpectedly, neither phagocytosis nor binding of apoptotic debris to the phagocyte was necessary to induce protection. Surprisingly, apoptotic cells released sphingosine-1-phosphate (S1P), mainly derived from sphingosine kinase 2, as a survival messenger. This points to an active role of apoptotic cells in preventing cell destruction in their neighborhood, with implications for innate immunity and inflammation.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
143 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献