Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF

Author:

Guba Markus1,Yezhelyev Maksim1,Eichhorn Martin E.1,Schmid Gerald1,Ischenko Ivan1,Papyan Armine1,Graeb Christian1,Seeliger Hendrik1,Geissler Edward K.1,Jauch Karl-Walter1,Bruns Christiane J.1

Affiliation:

1. From the Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany; Institute for Surgical Research, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany; and the Department of Surgery, University of Regensburg, Regensburg, Germany.

Abstract

Abstract Therapeutic strategies that target and disrupt the already-formed vessel networks of growing tumors are actively pursued. The goal of these approaches is to induce a rapid shutdown of the vascular function of the tumor so that blood flow is arrested and tumor cell death occurs. Here we show that the mammalian target of rapamycin (mTOR) inhibitor rapamycin, when administered to tumor-bearing mice, selectively induced extensive local microthrombosis of the tumor microvasculature. Importantly, rapamycin administration had no detectable effect on the peritumoral or normal tissue. Intravital microscopy analysis of tumors implanted into skinfold chambers revealed that rapamycin led to a specific shutdown of initially patent tumor vessels. In human umbilical vein endothelial cells vascular endothelial growth factor (VEGF)–induced tissue factor expression was strongly enhanced by rapamycin. We further show by Western blot analysis that rapamycin interferes with a negative feedback mechanism controlling this pathologic VEGF-mediated tissue factor expression. This thrombogenic alteration of the endothelial cells was confirmed in a one-step coagulation assay. The circumstance that VEGF is up-regulated in most tumors may explain the remarkable selectivity of tumor vessel thrombosis under rapamycin therapy. Taken together, these data suggest that rapamycin, besides its known antiangiogenic properties, has a strong tumor-specific, antivascular effect in tumors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3