Involvement of a ferroprotein sensor in hypoxia-mediated inhibition of neutrophil apoptosis

Author:

Mecklenburgh Katy I.1,Walmsley Sarah R.1,Cowburn Andrew S.1,Wiesener Michael1,Reed Benjamin J.1,Upton Paul D.1,Deighton John1,Greening Andrew P.1,Chilvers Edwin R.1

Affiliation:

1. From the Respiratory Medicine Division, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge; Respiratory Medicine Unit, Department of Medicine, University of Edinburgh Medical School; Respiratory Medicine Unit, Western General Hospital, Edinburgh; and Institute of Molecular Medicine, John Radcliffe Hospital, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.

Abstract

Neutrophil apoptosis represents a major mechanism involved in the resolution of acute inflammation. In contrast to the effect of hypoxia observed in many other cell types, oxygen deprivation, as we have shown, causes a profound but reversible delay in the rate of constitutive apoptosis in human neutrophils when aged in vitro. This effect was mimicked by exposing cells to 2 structurally unrelated iron-chelating agents, desferrioxamine (DFO) and hydroxypyridines (CP-94), and it appeared specific for hypoxia in that no modulation of apoptosis was observed with mitochondrial electron transport inhibitors, glucose deprivation, or heat shock. The involvement of chelatable iron in the oxygen-sensing mechanism was confirmed by the abolition of the DFO and CP-94 survival effect by Fe2+ ions. Although hypoxia inducible factor-1α (HIF-1α) mRNA was identified in freshly isolated neutrophils, HIF-1α protein was only detected in neutrophils incubated under hypoxic conditions or in the presence of DFO. Moreover, studies with cyclohexamide demonstrated that the survival effect of hypoxia was fully dependent on continuing protein synthesis. These results indicate that the neutrophil has a ferroprotein oxygen-sensing mechanism identical to that for erythropoietin regulation and results in HIF-1α up-regulation and profound but reversible inhibition of neutrophil apoptosis. This finding may have important implications for the resolution of granulocytic inflammation at sites of low-oxygen tension.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3