Affiliation:
1. Respiratory Medicine Unit, Department of Medicine (RIE), Rayne Laboratory, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, U.K.
Abstract
1. Neutrophil priming by agents such as tumour necrosis factor-α, granulocyte/macrophage colony-stimulating factor and lipopolysaccharide causes a dramatic increase in the response of these cells to an activating agent; this process has been shown to be critical for neutrophil-mediated tissue injury both in vitro and in vivo.
2. The principle consequence of priming, aside from a direct effect on cell polarization, deformability and integrin/selectin expression, is to permit secretagogue-induced superoxide anion generation, degranulation and lipid mediator (e.g. leukotriene B4 and arachidonic acid) release. It is now recognized that most priming agents also serve an additional function of delaying apoptosis and hence increasing the functional longevity of these cells at the inflamed site.
3. The potential mechanisms underlying priming are discussed; current data suggest a dissociation between priming and changes in receptor number and/or affinity, G-protein expression, phospholipase C and phospholipase A2 activation and changes in intracellular Ca2+ concentration. However, more recent studies support a key role for protein tyrosine phosphorylation and enhanced phospholipase D and phosphoinositide 3-kinase activity in neutrophil priming.
4. Recent work has also revealed the potential for neutrophils to spontaneously and fully ‘de-prime’ after an initial challenge with platelet-activating factor. This ability of neutrophils to undergo a complete cycle of priming—de-priming (and re-priming) reveals a previously unrecognized flexibility in the control of neutrophil behaviour at an inflamed site.
Cited by
306 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献