Expression of terminal α2-6–linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13

Author:

McGrath Rachel T.1,McKinnon Thomas A. J.2,Byrne Barry3,O'Kennedy Richard3,Terraube Virginie1,McRae Emily1,Preston Roger J. S.1,Laffan Mike A.2,O'Donnell James S.14

Affiliation:

1. Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland;

2. Haematology Department, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom;

3. Applied Biochemistry Group and Centre for Bioanalytical Sciences, School of Biotechnology, Dublin City University, Dublin, Ireland; and

4. National Centre for Hereditary Coagulation Disorders, St James's Hospital, Dublin, Ireland

Abstract

Abstractvon Willebrand factor (VWF) multimeric composition is regulated in plasma by ADAMTS13. VWF deglycosylation enhances proteolysis by ADAMTS13. In this study, the role of terminal sialic acid residues on VWF glycans in mediating proteolysis by ADAMTS13 was investigated. Quantification and distribution of VWF sialylation was examined by sequential digestion and high-performance liquid chromatography analysis. Total sialic acid expression on VWF was 167nmol/mg, of which the majority (80.1%) was present on N-linked glycan chains. Enzymatic desialylation of VWF by α2-3,6,8,9 neuraminidase (Neu-VWF) markedly impaired ADAMTS13-mediated VWF proteolysis. Neu-VWF collagen binding activity was reduced to 50% (± 14%) by ADAMTS13, compared with 11% (± 7%) for untreated VWF. Despite this, Neu-VWF exhibited increased susceptibility to other proteases, including trypsin, chymotrypsin, and cathepsin B. VWF expressing different blood groups exhibit altered ADAMTS13 proteolysis rates (O ≥ B > A ≥ AB). However, ABO blood group regulation of ADAMTS13 proteolysis was ablated on VWF desialylation, as both Neu-O-VWF and Neu-AB-VWF were cleaved by ADAMTS13 at identical rates. These novel data show that sialic acid protects VWF against proteolysis by serine and cysteine proteases but specifically enhances susceptibility to ADAMTS13 proteolysis. Quantitative variation in VWF sialylation therefore represents a key determinant of VWF multimeric composition and, as such, may be of pathophysiologic significance.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3