Itch−/−αβ and γδ T cells independently contribute to autoimmunity in Itchy mice

Author:

Parravicini Valentino1,Field Anne-Christine1,Tomlinson Peter D.1,Albert Basson M.2,Zamoyska Rose1

Affiliation:

1. Division of Molecular Immunology, Medical Research Council (MRC) National Institute for Medical Research, London; and

2. Department of Cranofacial Development, King's College London, London, United Kingdom

Abstract

AbstractE3 ubiquitin ligases determine which intracellular proteins are targets of the ubiquitin conjugation pathway and thus play a key role in determining the half-life, subcellular localization and/or activation status of their target proteins. Itchy mice lack the E3 ligase, Itch, and show dysregulation of T lymphocytes and the induction of a lethal autoimmune inflammatory condition. Itch is widely expressed in hematopoietic and nonhematopoietic cells, and we demonstrate that disease is transferred exclusively by hematopoietic cells. Moreover, distinct manifestations of the autoimmune inflammatory phenotype are contributed by discrete populations of lymphocytes. The presence of Itch-deficient αβ T cells drives expansion of peritoneal B1b cells and elevated IgM levels, which correlate with itching and pathology. In contrast, Itch−/− interleukin-4–producing γδ T cells, even in the absence of αβ T cells, are associated with elevated levels of IgE and an inflammatory condition. These data indicate that disruption of an E3 ubiquitin ligase in αβ T cells can subvert a B-cell subpopulation, which normally functions to control particular microbial pathogens in a T-independent manner, to contribute to autoimmunity. In addition, disruption of Itch in innate γδ T cells can influence autoimmune pathology and might therefore require distinct therapeutic intervention.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3