The Ubiquitin Ligase Itch Skews Light Zone Selection in Germinal Centers

Author:

Renshaw Lindsay1,Kim Peter1ORCID,Crici Macaul1ORCID,Fazelinia Hossein2,Spruce Lynn2,Oliver Paula23ORCID,Moser Emily1ORCID

Affiliation:

1. *Department of Medicine, University of Florida, Gainesville, FL

2. †Children’s Hospital of Philadelphia, Philadelphia, PA

3. ‡University of Pennsylvania, Philadelphia, PA

Abstract

Abstract Ig diversification occurs in peripheral lymphoid organs after establishment of central tolerance during B cell development. In germinal centers (GCs), somatic hypermutation of Ig genes occurs in dark zones, followed by selection of mutated clones in light zones (LZs). This generates high-affinity Ig receptors to pathogens but can also produce autoreactive Ig receptors, which are removed by selection mechanisms that are incompletely understood. The ubiquitin ligase Itch prevents the emergence of autoimmune disease and autoantibodies in humans and mice, and patients lacking Itch develop potentially fatal autoimmune diseases; yet, how Itch regulates GC B cells is not well understood. By studying Itch-deficient mice, we have recently shown that Itch directly limits the magnitude of GC responses. Proteomic profiling of GC B cells uncovered that Itch-deficient cells exhibit high mTORC1 and Myc activity, hallmarks of positive selection. Bone marrow chimera and adoptive transfer experiments revealed that B cell Itch restricts noncycling LZ cells. These results support, to our knowledge, a novel role for Itch in skewing selection of GC B cells to restrict LZ accumulation and shape GC-derived humoral immunity. Determining how B cells integrate cues within GCs to navigate through LZs and dark zones will aid in understanding how autoreactive clones emerge from GCs in people with autoimmune disease.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3