Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB–regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-κBα kinase, leading to potentiation of apoptosis

Author:

Sung Bokyung1,Pandey Manoj K.1,Ahn Kwang Seok1,Yi Tingfang2,Chaturvedi Madan M.1,Liu Mingyao2,Aggarwal Bharat B.1

Affiliation:

1. Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston; and

2. Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, Houston

Abstract

AbstractAnacardic acid (6-pentadecylsalicylic acid) is derived from traditional medicinal plants, such as cashew nuts, and has been linked to anticancer, anti-inflammatory, and radiosensitization activities through a mechanism that is not yet fully understood. Because of the role of nuclear factor-κB (NF-κB) activation in these cellular responses, we postulated that anacardic acid might interfere with this pathway. We found that this salicylic acid potentiated the apoptosis induced by cytokine and chemotherapeutic agents, which correlated with the down-regulation of various gene products that mediate proliferation (cyclin D1 and cyclooxygenase-2), survival (Bcl-2, Bcl-xL, cFLIP, cIAP-1, and survivin), invasion (matrix metalloproteinase-9 and intercellular adhesion molecule-1), and angiogenesis (vascular endothelial growth factor), all known to be regulated by the NF-κB. We found that anacardic acid inhibited both inducible and constitutive NF-κB activation; suppressed the activation of IκBα kinase that led to abrogation of phosphorylation and degradation of IκBα; inhibited acetylation and nuclear translocation of p65; and suppressed NF-κB–dependent reporter gene expression. Down-regulation of the p300 histone acetyltransferase gene by RNA interference abrogated the effect of anacardic acid on NF-κB suppression, suggesting the critical role of this enzyme. Overall, our results demonstrate a novel role for anacardic acid in potentially preventing or treating cancer through modulation of NF-κB signaling pathway.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 226 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable applications of phytochemicals and nutritive components derived from selected underutilized seeds: A review [pdf];Acta Scientiarum Polonorum Technologia Alimentaria;2024-03-30

2. Personalizing Nutrition Strategies: Bridging Research and Public Health;Journal of Personalized Medicine;2024-03-13

3. Anacardic acid inhibits the proliferation and inflammation of HaCaT cells induced by TNF-α via the regulation of NF-κB pathway;Tropical Journal of Pharmaceutical Research;2024-03-12

4. Role of Pistachio, Cashew, and Almond Seeds in Prevention and Treatment of Abnormal Proliferation;Seeds: Anti-proliferative Storehouse for Bioactive Secondary Metabolites;2024

5. Epigenetic modulations induced by natural products;Natural Molecules in Neuroprotection and Neurotoxicity;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3