CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis

Author:

Bixel M. Gabriele1,Li Hang1,Petri Bjoern1,Khandoga Alexander G.2,Khandoga Andrej2,Zarbock Alexander13,Wolburg-Buchholz Karen4,Wolburg Hartwig4,Sorokin Lydia5,Zeuschner Dagmar1,Maerz Sigrid1,Butz Stefan1,Krombach Fritz2,Vestweber Dietmar1

Affiliation:

1. Max Planck Institute of Molecular Biomedicine, Münster;

2. Walter Brendel Centre of Experimental Medicine, University of Munich, Munich;

3. Department of Anesthesiology and Critical Care Medicine, University of Münster, Münster;

4. Institute of Pathology, University of Tübingen, Tübingen; and

5. Institute for Physiological Chemistry, University of Münster, Münster, Germany

Abstract

Abstract Leukocyte extravasation depends on various adhesion receptors at endothelial cell contacts. Here we have analyzed how mouse CD99 and CD99L2 cooperate with PECAM-1. We found that antibodies against mouse CD99 and PECAM-1 trap neutrophils between endothelial cells in in vitro transmigration assays. A sequential function, as has been suggested for human PECAM-1 and CD99, could not be demonstrated. In contrast to these in vitro results, blocking CD99 or CD99L2 or gene disruption of PECAM-1 trapped neutrophils in vivo between endothelial cells and the underlying basement membrane as revealed by electron microscopy and by 3-dimensional confocal fluorescence microscopy in the inflamed cremaster tissue. Leukocyte extravasation was inhibited in interleukin-1β-inflamed peritoneum and in the cremaster by PECAM-1 gene disruption and was further attenuated by blocking antibodies against CD99 and CD99L2. In addition, CD99 and CD99L2 were required for leukocyte extravasation in the cremaster after stimulation with tumor necrosis factor-α, where the need for PECAM-1 is known to be bypassed. We conclude that CD99 and CD99L2 act independently of PECAM-1 in leukocyte extravasation and cooperate in an independent way to help neutrophils overcome the endothelial basement membrane.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3