Cis and trans regulation of hepcidin expression by upstream stimulatory factor

Author:

Bayele Henry K.1,McArdle Harry1,Srai Surjit K.S.1

Affiliation:

1. From the Department of Biochemistry and Molecular Biology, University College London; and The Rowett Research Institute, Aberdeen, United Kingdom.

Abstract

AbstractHepcidin is the presumed negative regulator of systemic iron levels; its expression is induced in iron overload, infection, and inflammation, and by cytokines, but is suppressed in hypoxia and anemia. Although the gene is exquisitely sensitive to changes in iron status in vivo, its mRNA is devoid of prototypical iron-response elements, and it is therefore not obvious how it may be regulated by iron flux. The multiplicity of effectors of its expression also suggests that the transcriptional circuitry controlling the gene may be very complex indeed. In delineating enhancer elements within both the human and mouse hepcidin gene promoters, we show here that members of the basic helix-loop-helix leucine zipper (bHLH-ZIP) family of transcriptional regulators control hepcidin expression. The upstream stimulatory factor 2 (USF2), previously linked to hepcidin through gene ablation in inbred mice, appears to exert a polar or cis-acting effect, while USF1 may act in trans to control hepcidin expression. In mice, we found variation in expression of both hepcidin genes, driven by these transcription factors. In addition, c-Myc and Max synergize to control the expression of this hormone, supporting previous findings for the role of this couple in regulating iron metabolism. Transcriptional activation by both USF1/USF2 and c-Myc/Max heterodimers occurs through E-boxes within the promoter. Site-directed mutagenesis of these elements rendered the promoter unresponsive to USF1/USF2 or c-Myc/Max. Dominant-negative mutants of USF1 and USF2 reciprocally attenuated promoter transactivation by both wild-type USF1 and USF2. Promoter occupancy by the transcription factors was confirmed by DNA-binding and chromatin immunoprecipitation assays. Taken together, it would appear that synergy between these members of the bHLH-ZIP family of transcriptional regulators may subserve an important role in iron metabolism as well as other pathways in which hepcidin may be involved.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3