Loss of Bcl-x in Ph+ B-ALL increases cellular proliferation and does not inhibit leukemogenesis

Author:

Harb Jason G.1,Chyla Brenda I.1,Huettner Claudia S.12

Affiliation:

1. BloodCenter of Wisconsin, Blood Research Institute, Milwaukee; and

2. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee

Abstract

AbstractThe kinase inhibitors imatinib mesylate and dasatinib are the preferred treatment for Philadelphia chromosome–positive (Ph+) leukemias, and they are highly successful in the chronic phase of chronic myeloid leukemia (CML). However, they are not efficient in Ph+ B-cell acute lymphoblastic leukemia (B-ALL). Ph+ leukemia cells are highly resistant to apoptosis, and evidence from cell lines and primary cells suggest Bcl-xL as a critical mediator of resistance to apoptosis: however, this concept has never been rigorously tested in an animal model. To clarify the role of Bcl-xL in Ph+ B-ALL, we generated 2 mouse models. In the first model, Ph+ B-ALL and loss of Bcl-xL expression are coinduced; in the second model, leukemia is induced with expression of Bcl-xL protein well above the levels found in wild-type lymphoblasts. Deletion of Bcl-xL did not inhibit leukemogenesis or affect apoptosis, but increased cellular proliferation. Consistent with this result, overexpression of Bcl-xL led to decreased cellular proliferation. These models reveal an unexpected role for Bcl-xL in cell-cycle entry and the proliferation of tumor cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3