Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel

Author:

Hassock Sheila R.1,Zhu Michael X.1,Trost Claudia1,Flockerzi Veit1,Authi Kalwant S.1

Affiliation:

1. From the Centre for Cardiovascular Biology and Medicine, King's College London, New Hunt's House, Guy's Campus, London; the Neurobiotechnology Centre, Ohio State University, Columbus; and the Institut für Pharmakologie und Toxikologie der Universität des Saarlandes, Homburg, Germany.

Abstract

Store-operated Ca++ entry (SOCE) is thought to comprise the major pathway for Ca++ entry in platelets. Recently, a number of transient receptor potential (TRP) proteins, which have been divided into 3 groups (TRPC, TRPM, and TRPV), have been suggested as SOCE channels. We report the expression and function of TRPC proteins in human platelets. TRPC6 is found at high levels and TRPC1 at low levels. Using purified plasma (PM) and intracellular membranes (IM), TRPC6 is found in the PM, but TRPC1 is localized to the IM. Using Fura-2–loaded platelets, we report that, in line with TRPC6 expression, 1-oleoyl-2-acetyl-sn-glycerol (OAG) stimulated the entry of Ca++ and Ba2+ independently of protein kinase C. Thrombin also induced the entry of Ca++ and Ba2+, but thapsigargin, which depletes the stores, induced the entry of only Ca++. Thus, thrombin activated TRPC6 via a SOCE-independent mechanism. In phosphorylation studies, we report that neither TRPC6 nor TRPC1 was a substrate for tyrosine kinases. TRPC6 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK) and associated with other cAMP-PK substrates. TRPC1 was not phosphorylated by cAMP-PK but also associated with other substrates. Activation of cAMP-PK inhibited Ca++ but not Ba2+ entry induced by thrombin and neither Ca++ nor Ba2+entry stimulated by OAG. These results suggest that TRPC6 is a SOCE-independent, nonselective cation entry channel stimulated by thrombin and OAG. TRPC6 is a substrate for cAMP-PK, although phosphorylation appears to not affect cation permeation. TRPC1 is located in IM, suggesting a role at the level of the stores.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3