Mechanisms of capacitative calcium entry

Author:

Putney James W.1,Broad Lisa M.1,Braun Franz-Josef1,Lievremont Jean-Philippe1,Bird Gary St J.1

Affiliation:

1. Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle, Park, NC 27709, USA

Abstract

Capacitative Ca2+ entry involves the regulation of plasma membrane Ca2+ channels by the filling state of intracellular Ca2+ stores in the endoplasmic reticulum (ER). Several theories have been advanced regarding the mechanism by which the stores communicate with the plasma membrane. One such mechanism, supported by recent findings, is conformational coupling: inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptors in the ER may sense the fall in Ca2+ levels through Ca2+-binding sites on their lumenal domains, and convey this conformational information directly by physically interacting with Ca2+ channels in the plasma membrane. In support of this idea, in some cell types, store-operated channels in excised membrane patches appear to depend on the presence of both Ins(1,4,5)P3 and Ins(1,4,5)P3 receptors for activity; in addition, inhibitors of Ins(1,4,5)P3 production that either block phospholipase C or inhibit phosphatidylinositol 4-kinase can block capacitative Ca2+ entry. However, the electrophysiological current underlying capacitative Ca2+ entry is not blocked by an Ins(1,4,5)P3 receptor antagonist, and the blocking effects of a phospholipase C inhibitor are not reversed by the intracellular application of Ins(1,4,5)P3. Furthermore, cells whose Ins(1,4,5)P3 receptor genes have been disrupted can nevertheless maintain their capability to activate capacitative Ca2+ entry channels in response to store depletion. A tentative conclusion is that multiple mechanisms for signaling capacitative Ca2+ entry may exist, and involve conformational coupling in some cell types and perhaps a diffusible signal in others.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3