TET2 Is a Novel Tumor Suppressor Gene Inactivated in Myeloproliferative Neoplasms: Identification of a Pre-JAK2 V617F Event

Author:

Delhommeau Francois1,Dupont Sabrina2,James Chloe3,Masse Aline2,le Couedic Jean Pierre2,Valle Veronique Della3,Alberdi Antonio4,Dessen Philippe5,Fontenay Michaela6,Casadevall Nicole7,Soulier Jean4,Bernard Olivier8,Vainchenker William9

Affiliation:

1. Hematology, Paris 6 University Pierre et Marie Curie, Saint-Antoine Hospital, Paris, France

2. U790, Inserm, Villejuif, France

3. Universite Bordeaux 2, INSERM U876, Bordeaux, France

4. Hematology Laboratory, Hopital Saint-Louis, Paris, France

5. Genomics, Institut Gustave Roussy, Villejuif, France

6. Groupe Francophone des Myelodysplasies, France

7. Laboratoire d’Hematologie, Hopital St Antoine, Paris, France

8. INSERM E0210, Hopital Necker; Université Paris V, Paris, France

9. INSERM U790, Institut Gustave Roussy, Villejuif, France

Abstract

Abstract Myeloproliferative neoplasms (MPN) are clonal hematopoietic stem cell (HSC) malignancies with increased expansion of myeloid lineages. JAK2 and MPL mutations are detected in MPN patients’ HSCs but their biological consequences appear to rather target the terminal myeloid differentiation than the early steps of hematopoiesis. Analysis of CD34+CD38− multipotent progenitors, CD34+CD38+ committed progenitors and mature cells, led us to identify two subsets of JAK2 V617F MPN at diagnosis with distinct kinetics of hematopoietic expansion. The first subset (85% of patients) is characterized by a late expansion of the malignant clone –i.e downstream the committed progenitor stage. In contrast, the second subset of patients (15%) has an early expansion of the clone, upstream the committed progenitor stage. The hallmark of this early expansion is a high percentage (>80%) of JAK2 V617F positive multipotent or committed progenitors, contrasting with low percentages (<50%) in other MPN patients (Dupont et al, Blood 2007). We hypothesized that the second subset of patients had a pre-existent molecular defect able to promote the early expansion of the malignant clone. With high resolution SNP arrays (Affymetrix 500K) and CGH arrays (Agilent 244K), we compared malignant granulocyte or erythroblast DNA with paired non malignant lymphocyte DNA from five patients with such a phenotype. Three/5 harbored an acquired loss of heterozygosity (LOH) on the long arm of chromosome 4. In 2 patients, the LOH spanned a large region from the 4q22 band to the telomeric end, without copy number variation. In contrast, in the third patient the LOH was restricted to the 4q24 region and was due to a 325 kb microdeletion. This minimal candidate region contains only one single gene, TET2 (Ten-Eleven Translocation–2), which belongs to a family of three genes of unknown function. Sequencing of the coding region of TET2 in the two patients with large LOH revealed a mutation leading to a stop codon in exon 3 and a 9 nucleotide deletion in exon 6 resulting in the loss of 3 evolutionary-conserved residues. TET2 coding sequence was normal in the patient with the 325 kb deletion and in the samples from the 2 patients without 4q24 LOH. Analysis of lymphocyte DNA demonstrated that TET2 defects were acquired. To extend our results we sequenced TET2 in a series of 181 unselected JAK2 V617F MPN patients. We found TET2 deletions, frame shifts, stop codons or conserved amino-acid substitutions, in 25 MPN (3/10 primary myelofibrosis, 14/98 polycythemia vera, 8/73 essential thrombocythemia), resulting in an overall 14% frequency. In the majority of MPN patients our results suggest that the two copies are affected, indicating that TET2 behaves as a tumor suppressor gene. To determine whether TET2 inactivation was an early, pre-JAK2 V617F molecular event, we analyzed single clones grown from CD34+CD38− and CD34+CD38+ cells in five patients with TET2 mutations. We showed that TET2 defects target both multipotent and committed progenitors, some of them being TET2 mutated in the absence of JAK2 V617F. This indicates that TET2 inactivation is a pre-JAK2 V617F event in these five patients. Finally, TET2-mutated HSCs from MPN patients have an increased capacity to repopulate non obese diabetic-severe combined immunodeficient (NOD-SCID) mice, suggesting that TET2 regulates HSC properties. In conclusion we have identified TET2 as a probable new tumor suppressor gene altered in 14% of MPN patients. This gene may have key functions in hematopoiesis and HSC biology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3