Author:
Hojima Y,Cochrane CG,Wiggins RC,Austen KF,Stevens RL
Abstract
Abstract
A large number of negatively charged macromolecules, including DNA, glycosaminoglycans, and proteoglycans, were tested as possible activators of the contact (Hageman factor) system in vitro. Activation was assessed by conversion of prekallikrein to kallikrein, as determined by amidolytic assay and by cleavage of 125I-Hageman factor into 52,000- and 28,000-dalton fragments. Of particular interest to these studies, heparin proteoglycan and glycosaminoglycan from rat peritoneal mast cells, and squid chondroitin sulfate E, which is representative of the glycosaminoglycan from cultured mouse bone marrow derived mast cells, induced the reciprocal activation between Hageman factor and prekallikrein. In addition, naturally occurring heparin glycosaminoglycans from pig mucosa, bovine lung, and rat mast cells also induced activation. In contrast, native connective tissue matrix glycosaminoglycans and proteoglycans from several sources were inactive, although when one such chondroitin sulfate was further sulfated in vitro, it gained activity. When the negative charge of the activating agents was blocked by the addition of hexadimethrine bromide, the cleavage of 125I-Hageman factor in the presence of prekallikrein was prevented. The active negatively charged macromolecules induced cleavage of 125I-high molecular weight kininogen in normal plasma but not in Hageman factor-deficient or prekallikrein- deficient plasmas. Reconstitution of prekallikrein-deficient plasma with purified prekallikrein restored the kininogen cleavage upon addition of the active proteoglycans. These results suggest that both heparin from connective tissue mast cells and highly sulfated chondroitin sulfate E from cultured mouse bone marrow derived mast cells (which are considered synonomous with mucosal mast cells) could activate the contact system of plasma subsequent to an activation secretion response.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献