Deeper Insights into Hematological Oncology Disorders via Single-Cell Phospho-Signaling Analysis

Author:

Nolan Garry P.

Abstract

Abstract An understanding of hematological cancer cell signaling processes poses one of the most complex and intractable problems in modern biomedical inquiry. While we understand some of the fundamental players that contribute to oncogenic processes, significant effort is focused upon determining how these individual players relay information to each other to create the composite functions of a cancer cell. Efforts designed to understand these processes at the single cell level will undoubtedly allow for understanding of the heterogeneity of hematological tumors as well as, simultaneously, the function of the ‘responding’ immune system. I will relate some of the insights our laboratory has developed over the last several years applying single-cell phospho-flow cytometry to the study of signaling in primary patient material and murine models. While it is clear that this analysis now allows us to accomplish phospho-signaling biochemistry at the single cell level with primary cell material, we are only beginning to develop some of the bioinformatics tools to appropriately display the vast amount of information collected by such approaches. These approaches, however, have already allowed us to develop approaches that prognosticate patient outcomes based on signaling status, prior to any treatment, as well as subgroup patient subtypes according to signaling states. The modest efforts to date presage a time where it should be possible to provide far more tailored therapies specific to the varied diseases represented by the hematological malignancies.

Publisher

American Society of Hematology

Subject

Hematology

Reference24 articles.

1. Rossi DJ, Weissman IL. Pten, tumorigenesis, and stem cell self-renewal. Cell. 2006;125(2):229–231.

2. Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA. 2005;294(11):359–366.

3. Weissman IL. Normal and neoplastic stem cells. Novartis Found Symp. 2005;265:35–50; discussion 50–4, 92–7.

4. Ashwell JD. The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol. 2006;6(7):532–540.

5. Hunter T, Eckhart W. The discovery of tyrosine phosphorylation: it’s all in the buffer! Cell. 2004;116(2 Suppl):S35–39, 1 p following S48.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3