Formation of Dense Erythrocytes in SAD Mice Exposed to Chronic Hypoxia: Evaluation of Different Therapeutic Regimens and of a Combination of Oral Clotrimazole and Magnesium Therapies

Author:

De Franceschi Lucia1,Brugnara Carlo1,Rouyer-Fessard Philippe1,Jouault Helene1,Beuzard Yves1

Affiliation:

1. From the Department of Internal Medicine, University of Verona, Verona, Italy; the Experimental Laboratory of Gene Therapy, Hopital St Louis, Paris, France; the Laboratory of Hematology, INSERM U91, Hopital Henri Mondor, Creteil, France; and the Departments of Laboratory Medicine and Pathology, Children's Hospital, Harvard Medical School, Boston, MA.

Abstract

AbstractWe have examined the effect of hydroxyurea (HU), clotrimazole (CLT), magnesium oxide (Mg), and combined CLT+Mg therapies on the erythrocyte characteristics and their response to chronic hypoxia in a transgenic sickle mouse (SAD) model. SAD mice were treated for 21 days with 1 of the following regimens (administered by gavage): control (n = 6), HU (200 mg/d; n = 6), CLT (80 mg/kg/d, n = 5), Mg (1,000 mg/kg/d, n = 5), and CLT+Mg (80 and 1,000 mg/kg/d, respectively, n = 6). Nine normal mice were also treated as controls (n = 3), HU (n = 3), and CLT+Mg (n = 3). Treatment with HU induced a significant increase in mean corpuscular volume and cell K content and a decrease in density in SAD mice. Treatment with the CLT and Mg, either alone or in combination, also increased cell K and reduced density in SAD mice. After 21 days of treatment, the animals were exposed to hypoxia (48 hours at 8% O2) maintaining the same treatment. In the SAD mice, hypoxia induced significant cell dehydration. These hypoxia-induced changes were blunted in either HU- or Mg-treated SAD mice and were completely abolished by either CLT or CLT+Mg treatment, suggesting a major role for the Gardos channel in hypoxia-induced dehydration in vivo.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3