VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis

Author:

Hamada Koichi1,Oike Yuichi1,Takakura Nobuyuki1,Ito Yasuhiro1,Jussila Lotta1,Dumont Daniel J.1,Alitalo Kari1,Suda Toshio1

Affiliation:

1. From the Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Japan; Molecular/Cancer Biology Laboratory, Haartman Institute, PL21, University of Helsinki, Helsinki, Finland; and the Department of Medical Biophysics, University of Toronto, Ontario, Canada.

Abstract

Abstract Signaling by vascular endothelial growth factors (VEGFs) through VEGF receptors (VEGFRs) plays important roles in vascular development and hematopoiesis. The authors analyzed the function of VEGF-C signaling through both VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis using a coculture of para-aortic splanchnopleural mesoderm (P-Sp) explants from mouse embryos with stromal cells (OP9). Vasculogenesis and angiogenesis were evaluated by the extent of vascular bed and network formation, respectively. Addition of VEGF-C to the P-Sp culture enhanced vascular bed formation and suppressed definitive hematopoiesis. Both vascular bed and network formations were completely suppressed by addition of soluble VEGFR-1–Fc competitor protein. Formation of vascular beds but not networks could be rescued by VEGF-C in the presence of the competitor, while both were rescued by VEGF-A. VEGFR-3–deficient embryos show the abnormal vasculature and severe anemia. Consistent with these in vivo findings, vascular bed formation in the P-Sp from the VEGFR-3–deficient embryos was enhanced to that in wild-type or heterozygous embryos, and hematopoiesis was severely suppressed. When VEGFR-3–Fc chimeric protein was added to trap endogenous VEGF-C in the P-Sp culture of the VEGFR-3–deficient embryos, vascular bed formation was suppressed and hematopoiesis was partially rescued. These results demonstrate that because VEGF-C signaling through VEGFR-2 works synergistically with VEGF-A, the binding of VEGF-C to VEGFR-3 consequently regulates VEGFR-2 signaling. In VEGFR-3–deficient embryos, an excess of VEGF-C signals through VEGFR-2 induced the disturbance of vasculogenesis and hematopoiesis during embryogenesis. This indicates that elaborated control through VEGFR-3 signaling is critical in vasculoangiogenesis and hematopoiesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3