Affiliation:
1. From the Departments of Clinical Investigation and Hematology, The University of Texas MD Anderson Cancer Center, Houston.
Abstract
AbstractThe major actions of nucleoside analogs such as arabinosylcytosine (ara-C) and fludarabine occurs after their incorporation into DNA, during either replication or repair synthesis. The metabolic salvage and DNA incorporation of the normal nucleoside, deoxycytidine, is functionally compartmentalized toward repair synthesis in a process regulated by ribonucleotide reductase. The aim of this study was to investigate the metabolic pathways by which nucleoside analogs that do (fludarabine, gemcitabine) or do not (ara-C) affect ribonucleotide reductase are incorporated into DNA in proliferating human leukemia cells. Using alkaline density-gradient centrifugation to separate repaired DNA from replicating DNA and unreplicated parental DNA strands, approximately 60% of ara-C nucleotide in DNA was incorporated by repair synthesis in CCRF-CEM cells; the remainder was incorporated by replication. In contrast, fludarabine and gemcitabine, nucleosides that inhibit ribonucleotide reductase and decreased deoxynucleotide pools, were incorporated mainly within replicating DNA. Hydroxyurea also depleted deoxynucleotide pools and increased the incorporation of ara-C into DNA by replicative synthesis. Stimulation of DNA repair activity by UV irradiation selectively enhanced the incorporation of all nucleosides tested through repair synthesis. These findings suggest that the pathways by which therapeutically useful nucleoside analogs are incorporated into DNA are affected by cellular dNTP pools from de novo synthesis and by the relative activities of DNA repair and replication. The antitumor activity of these drugs may be enhanced by combination with either ribonucleotide reductase inhibitors to increase their incorporation into replicating DNA or with agents that induce DNA damage and evoke the DNA repair process.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Reference66 articles.
1. Studies in mouse L-cells on the incorporation of 1-β-D-arabinofuranosylcytosine into DNA and on inhibition of DNA polymerase by 1-β-D-arabinofuranosylcytosine 5′-triphosphate.;Graham;Cancer Res,1970
2. Correlation of cytotoxicity with incorporation of ara-C into DNA.;Kufe;J Biol Chem,1980
3. Lethality of human myeloblasts correlates with the incorporation of arabinofuranosylcytosine into DNA.;Major;Proc Nat Acad Sci USA,1981
4. Termination of DNA synthesis by 9-β-D-arabinofuranosyl-2-fluoroadenine: A mechanism for cytotoxicity.;Huang;J Biol Chem,1990
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献