Dramatic increase in lymph node dendritic cell number during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne DC recruitment

Author:

Martı́n Pilar1,Ruiz Sara Ruiz1,del Hoyo Gloria Martı́nez1,Anjuère Fabienne1,Vargas Héctor Hernández1,López-Bravo Marı́a1,Ardavı́n Carlos1

Affiliation:

1. From the Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain.

Abstract

Despite the information dealing with the differential phenotype and function of the main mouse dendritic cell (DC) subpopulations, namely, CD8α− and CD8α+ DCs, their origin and involvement in antiviral immune responses in vivo are still largely unknown. To address these issues, this study used the changes occurring in DC subpopulations during the experimental infection by the Swiss (SW) strain of the mouse mammary tumor virus (MMTV). MMTV(SW) induced an 18-fold increase in lymph node DCs, which can be blocked by anti-CD62L treatment, concomitant with the presence of high numbers of DCs in the outer cortex, in close association with high endothelial venules. These data suggest that the DC increase caused by MMTV(SW) infection results from the recruitment of blood-borne DCs via high endothelial venules, by a CD62L-dependent mechanism. In addition, skin sensitization assays indicate that MMTV(SW) infection inhibits epidermal Langerhans cell migration to the draining lymph node. Moreover, data on the kinetics of MMTV(SW)-induced expansion of the different DC subsets support the hypothesis that CD8− and CD8+ DCs represent different maturation stages of the same DC population, rather than myeloid- and lymphoid-derived DCs, respectively, as previously proposed. Finally, the fact that DCs were infected by MMTV(SW) suggests their participation in the early phases of infection.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3