Cultivation of aorta-gonad-mesonephros–derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow

Author:

Takeuchi Masaki1,Sekiguchi Takashi1,Hara Takahiko1,Kinoshita Taisei1,Miyajima Atsushi1

Affiliation:

1. From the Institute of Molecular and Cellular Biosciences, the University of Tokyo, Japan; and CREST, Core Research for Evolutional Science and Technology of Japan Science and Technology, Tokyo, Japan.

Abstract

During mammalian development, definitive hematopoietic stem cells (HSCs) arise in the aorta-gonad-mesonephros (AGM) region and colonize the fetal liver (FL) before hematopoiesis occurs in the bone marrow. The FL is a unique hematopoietic organ where both HSCs and mature blood cells are actively generated along with functional maturation of hepatic cells as a metabolic organ. To characterize HSCs and FL microenvironments during development, this study establishes a coculture system composed of AGM-originated HSCs and FL nonhematopoietic cells. The results demonstrate that FL cells support significant expansion of lineage-committed hematopoietic cells as well as immature progenitors. More important, long-term repopulating activity was amplified from AGM-originated HSCs in this coculture system. Engraftment of HSCs to the bone marrow was strongly enhanced by coculture. In addition, AGM HSCs produced significantly more hematopoietic cells than E14.5 and E18.5 FL HSCs in vitro. These results suggest that the FL microenvironment not only stimulates expansion of the hematopoietic system, but also possibly modifies the characteristics of AGM HSCs. Thus, this coculture system recapitulates the developmental process of HSCs and the FL microenvironment and provides a novel means to study the development of hematopoiesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3