Interleukin-3 and interferon β cooperate to induce differentiation of monocytes into dendritic cells with potent helper T-cell stimulatory properties

Author:

Buelens Christel1,Bartholomé Emmanuel J.1,Amraoui Zoulikha1,Boutriaux Michael1,Salmon Isabelle1,Thielemans Kris1,Willems Fabienne1,Goldman Michel1

Affiliation:

1. From the Laboratory of Experimental Immunology and the Laboratory of Anatomo-Pathology, Université Libre de Bruxelles, and the Laboratory of Physiology-Immunology, Vrije Universiteit Brussel, Brussels, Belgium.

Abstract

Abstract It was observed that interferon β (IFN-β) prevents the down-regulation of the interleukin-3 receptor α chain (IL-3Rα), which spontaneously occurs during culture of human monocytes. The functionality of IL-3R was demonstrated by the fact that IL-3 rescued IFN-β–treated monocytes from apoptosis. Monocytes cultured in the presence of IFN-β and IL-3 acquire a dendritic morphology and express high levels of HLA antigen class I and class II and costimulatory molecules. When stimulated by either lipopolysaccharide or fibroblasts expressing CD40 ligand (CD40L) transfectants, dendritic cells (DCs) generated in IFN-β and IL-3 secreted high levels of IL-6, IL-8, and tumor necrosis factor-α but low levels of IL-12 in comparison with DCs generated in IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF). In mixed leukocyte culture, IL-3–IFN-β DCs induced a vigorous proliferative response of allogeneic cord blood T cells and elicited the production of high levels of IFN-γ and IL-5 by naive adult CD4+ T cells. Finally, IL-3–IFN-β DCs were found to produce much higher levels of IFN-α than IL-4–GM-CSF DCs in response to Poly (I:C) but not to influenza virus. It was concluded that monocytes cultured in the presence of IL-3 and IFN-β differentiate into DCs with potent helper T-cell stimulatory capacity despite their low secretion of IL-12.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3