Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells

Author:

Guzman Monica L.1,Neering Sarah J.1,Upchurch Donna1,Grimes Barry1,Howard Dianna S.1,Rizzieri David A.1,Luger Selina M.1,Jordan Craig T.1

Affiliation:

1. From the Blood and Marrow Transplant Program, Markey Cancer Center, Division of Hematology/Oncology, University of Kentucky Medical Center, Lexington; Division of Oncology and Bone Marrow Transplantation, Duke University Medical Center, Durham, NC; and Hematology-Oncology Division, University of Pennsylvania Medical Center, Philadelphia.

Abstract

Abstract Human acute myelogenous leukemia (AML) is thought to arise from a rare population of malignant stem cells. Cells of this nature, herein referred to as leukemic stem cells (LSCs), have been documented for nearly all AML subtypes and appear to fulfill the criteria for stem cells in that they are self-renewing and give rise to the cells found in many leukemic populations. Because these cells are likely to be critical for the genesis and perpetuation of leukemic disease, the present studies sought to characterize unique molecular properties of the LSC population, with particular emphasis on the transcription factor, nuclear factor-κB (NF-κB). Previous experiments have shown that unstimulated human CD34+ progenitor cells do not express NF-κB. In contrast, primary AML CD34+ cells display readily detectable NF-κB activity as assessed by electrophoretic mobility shift assay and gene expression studies. Furthermore, detailed analyses of enriched AML stem cells (CD34+/CD38−/CD123+) indicate that NF-κB is also active in the LSC population. Given the expression of NF-κB in leukemic, but not normal primitive cells, the hypothesis that inhibition of NF-κB might induce leukemia-specific apoptosis was tested by treating primary cells with the proteasome inhibitor MG-132, a well-known inhibitor of NF-κB. Leukemic CD34+/CD38− cells displayed a rapid induction of cell death in response to MG-132, whereas normal CD34+/CD38− cells showed little if any effect. Taken together, these data indicate that primitive AML cells aberrantly express NF-κB and that the presence of this factor may provide unique opportunities to preferentially ablate LSCs.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3