γc Gene Transfer in the Presence of Stem Cell Factor, FLT-3L, Interleukin-7 (IL-7), IL-1, and IL-15 Cytokines Restores T-Cell Differentiation From γc(−) X-Linked Severe Combined Immunodeficiency Hematopoietic Progenitor Cells in Murine Fetal Thymic Organ Cultures

Author:

Hacein-Bey S.1,Basile G. De Saint1,Lemerle J.1,Fischer A.1,Cavazzana-Calvo M.1

Affiliation:

1. From the Institut National de la santé et de la Recherche Médicale U429 et Centre de Transfusion Sanguine, Hôpital Necker-Enfants Malades, Paris Cedex, France.

Abstract

Abstract X-linked severe combined immunodeficiency (SCID-Xl) is a rare human inherited disorder in which early T and natural killer (NK) lymphocyte development is blocked. The genetic disorder results from mutations in the common γc chain that participates in several cytokine receptors including the interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15 receptors. We have shown in a previous report that γc gene transfer into SCID-Xl bone marrow (BM) cells restores efficient NK cell differentiation. In this study, we have focused on the introduction of the γc gene into SCID-Xl hematopoietic stem cells with the goal of obtaining differentiation into mature T cells. For this purpose, we used the in vitro hybrid fetal thymic organ culture (FTOC) system in which a combination of cytokines consisting of stem cell factor (SCF), Flt-3L, IL-7, IL-1, and IL-15 is added concomitantly. In this culture system, CD34+ marrow cells from two SCID-Xl patients were able to mature into double positive CD4+ CD8+ cells and to a lesser degree into CD4+ TCRβ+ single positive cells after retroviral-mediated γc gene transfer. In addition, examination of the output cell population at the TCR DJβ1 locus exhibited multiple rearrangements. These results indicate that restoration of the γc/JAK/STAT signaling pathway during the early developmental stages of thymocytes can correct the T-cell differentiation block in SCID-Xl hematopoietic progenitor cells and therefore establishes a basis for further clinical γc gene transfer studies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3