Metabolic adaptation to tyrosine kinase inhibition in leukemia stem cells

Author:

Qiu Shaowei12ORCID,Sheth Vipul1,Yan Chengcheng1,Liu Juan3,Chacko Balu K.4,Li Hui1,Crossman David K.5ORCID,Fortmann Seth D.67,Aryal Sajesan1ORCID,Rennhack Ashley1,Grant Maria B.6,Welner Robert S.1,Paterson Andrew J.1,Wende Adam R.4ORCID,Darley-Usmar Victor M.4,Lu Rui1ORCID,Locasale Jason W.3,Bhatia Ravi1ORCID

Affiliation:

1. 1Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL

2. 2State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China

3. 3Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC

4. 4Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL

5. 5Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL

6. 6Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL

7. 7Medical Scientist Training Program, School of Medicine, University of Alabama at Birmingham, Birmingham, AL

Abstract

Abstract Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1–mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3