A personalized approach to guide allogeneic stem cell transplantation in younger adults with acute myeloid leukemia

Author:

Fenwarth Laurène1ORCID,Thomas Xavier2,de Botton Stéphane3ORCID,Duployez Nicolas1ORCID,Bourhis Jean-Henri3,Lesieur Auriane1,Fortin Gael4ORCID,Meslin Paul-Arthur4,Yakoub-Agha Ibrahim5ORCID,Sujobert Pierre6,Dumas Pierre-Yves7ORCID,Récher Christian8ORCID,Lebon Delphine9,Berthon Céline110ORCID,Michallet Mauricette2,Pigneux Arnaud7,Nguyen Stéphanie11,Chantepie Sylvain12ORCID,Vey Norbert13,Raffoux Emmanuel14,Celli-Lebras Karine15,Gardin Claude16,Lambert Juliette17,Malfuson Jean-Valère18,Caillot Denis19,Maury Sébastien20,Ducourneau Benoît121ORCID,Turlure Pascal22,Lemasle Emilie23,Pautas Cécile20,Chevret Sylvie24,Terré Christine25,Boissel Nicolas26,Socié Gérard27,Dombret Hervé14ORCID,Preudhomme Claude1ORCID,Itzykson Raphael414ORCID

Affiliation:

1. Unité Mixte de Recherche (UMR) 9020–UMR1277, Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalo-Universitaire (CHU) Lille, Institut de Recherche sur le Cancer de Lille (IRCL), Lille, France;

2. Service d'Hématologie Clinique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France;

3. Département d’Hématologie, Institut Gustave Roussy, Villejuif, France;

4. Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France;

5. CHU de Lille, University of Lille, INSERM U1286, Infinite, Lille, France;

6. Service d'Hématologie Biologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France;

7. Service d’Hématologie et Thérapie Cellulaire, CHU Bordeaux, Bordeaux, France;

8. Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse–Oncopole, Toulouse, France;

9. Service d’Hématologie Clinique, CHU Amiens, Amiens, France;

10. Service d’Hématologie, CHU Lille, Lille, France;

11. Service d’Hématologie Clinique, Hôpital Pitié-Salpétrière, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France;

12. Service d’Hématologie Clinique, CHU Caen, Caen, France;

13. Service d’Hématologie, Institut Paoli-Calmettes, Marseille, France;

14. Service Hématologie Adultes, Hôpital Saint-Louis, AP-HP, Paris, France;

15. Acute Leukemia French Association Coordination Office, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France;

16. Service d’Hématologie Clinique, Hôpital Avicenne, AP-HP, Bobigny, France;

17. Département d'Hématologie Clinique, Hôpital André Mignot, Centre Hospitalier de Versailles, Le Chesnay, France;

18. Service d’Hématologie Clinique, Hôpital d’Instruction des Armées Percy, Clamart, France;

19. Service d’Hématologie Clinique, CHU Dijon, Dijon, France;

20. Service d’Hématologie Clinique, Hôpital Henri Mondor, AP-HP, Créteil, France;

21. Laboratoire d’Hématologie, CH Valenciennes, Valenciennes, France;

22. Service d’Hématologie Clinique, CHU Limoges, Limoges, France;

23. Service d’Hématologie, Centre Henri Becquerel, Rouen, France;

24. Service de Biostatistiques et Informatique Médicale, Hôpital Saint-Louis, AP-HP, Paris, France;

25. Laboratoire d’Hématologie, CH Versailles, Le Chesnay, France; and

26. Service Hématologie Adolescents Jeunes Adultes and

27. Service Hématologie Greffe, Hôpital Saint-Louis, AP-HP, Paris, France

Abstract

Abstract A multistage model instructed by a large dataset (knowledge bank [KB] algorithm) has recently been developed to improve outcome predictions and tailor therapeutic decisions, including hematopoietic stem cell transplantation (HSCT) in acute myeloid leukemia (AML). We assessed the performance of the KB in guiding HSCT decisions in first complete remission (CR1) in 656 AML patients younger than 60 years from the ALFA-0702 trial (NCT00932412). KB predictions of overall survival (OS) were superior to those of European LeukemiaNet (ELN) 2017 risk stratification (C-index, 68.9 vs 63.0). Among patients reaching CR1, HSCT in CR1, as a time-dependent covariate, was detrimental in those with favorable ELN 2017 risk and those with negative NPM1 minimal residual disease (MRD; interaction tests, P = .01 and P = .02, respectively). Using KB simulations of survival at 5 years in a scenario without HSCT in CR1 (KB score), we identified, in a similar time-dependent analysis, a significant interaction between KB score and HSCT, with HSCT in CR1 being detrimental only in patients with a good prognosis based on KB simulations (KB score ≥40; interaction test, P = .01). We could finally integrate ELN 2017, NPM1 MRD, and KB scores to sort 545 CR1 patients into 278 (51.0%) HSCT candidates and 267 (49.0%) chemotherapy-only candidates. In both time-dependent and 6-month landmark analyses, HSCT significantly improved OS in HSCT candidates, whereas it significantly shortened OS in chemotherapy-only candidates. Integrating KB predictions with ELN 2017 and MRD may thus represent a promising approach to optimize HSCT timing in younger AML patients.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3