The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis

Author:

Stone Andrew P.12ORCID,Nascimento Thais F.1,Barrachina Maria N.12ORCID

Affiliation:

1. Vascular Biology Program, Boston Children’s Hospital, Boston, MA; and

2. Department of Surgery, Harvard Medical School, Boston, MA

Abstract

Abstract Megakaryocytes (MKs), the largest of the hematopoietic cells, are responsible for producing platelets by extending and depositing long proplatelet extensions into the bloodstream. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells (HSCs) along the myeloid branch of hematopoiesis. However, recent studies suggest that MKs can be generated from multiple pathways, some of which do not require transit through multipotent or bipotent MK-erythroid progenitor stages in steady-state and emergency conditions. Growing evidence suggests that these emergency conditions are due to stress-induced molecular changes in the bone marrow (BM) microenvironment, also called the BM niche. These changes can result from insults that affect the BM cellular composition, microenvironment, architecture, or a combination of these factors. In this review, we explore MK development, focusing on recent studies showing that MKs can be generated from multiple divergent pathways. We highlight how the BM niche may encourage and alter these processes using different mechanisms of communication, such as direct cell-to-cell contact, secreted molecules (autocrine and paracrine signaling), and the release of cellular components (eg, extracellular vesicles). We also explore how MKs can actively build and shape the surrounding BM niche.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3