Author:
Liao Weinian,Chen Xinliang,Zhang Shuzhen,Chen Jun,Liu Chaonan,Yu Kuan,Zhang Yimin,Chen Mo,Chen Fang,Shen Mingqiang,Lu Binghui,Han Songling,Wang Song,Wang Junping,Du Changhong
Abstract
Abstract
Background
Hematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood.
Methods
A mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice.
Results
Megakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression.
Conclusions
Our study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.
Funder
Chongqing Graduate Student Research Innovation Project
National Natural Science Foundation of China
Key Program of National Natural Science Foundation of China
Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission
Chongqing Education Commission of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献