Trimethylamine N-Oxide Reduces Neurite Density and Plaque Intensity in a Murine Model of Alzheimer’s Disease

Author:

Zarbock Katie R.12,Han Jessica H.13,Singh Ajay P.4,Thomas Sydney P.3,Bendlin Barbara B.56,Denu John M.3,Yu John-Paul J.4,Rey Federico E.1,Ulland Tyler K.2

Affiliation:

1. Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA

2. Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA

3. Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA

4. Department of Radiology, Division of Neuroradiology, University of Wisconsin-Madison, Madison, WI, USA

5. Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin-Madison, Madison, WI, USA

6. Wisconsin Alzheimer’s Disease Research Center, Madison, WI, USA

Abstract

Background: Alzheimer’s disease (AD) is the most common aging-associated neurodegenerative disease; nevertheless, the etiology and progression of the disease is still incompletely understood. We have previously shown that the microbially-derived metabolite trimethylamine N-oxide (TMAO) is elevated in the cerebrospinal fluid (CSF) of individuals with cognitive impairment due to AD and positively correlates with increases in CSF biomarkers for tangle, plaque, and neuronal pathology. Objective: We assessed the direct impact of TMAO on AD progression. Methods: To do so, transgenic 5XFAD mice were supplemented with TMAO for 12 weeks. Neurite density was assessed through quantitative brain microstructure imaging with neurite orientation dispersion and density imaging magnetic resonance imaging (MRI). Label-free, quantitative proteomics was performed on cortex lysates from TMAO-treated and untreated animals. Amyloid-β plaques, astrocytes, and microglia were assessed by fluorescent immunohistochemistry and synaptic protein expression was quantified via western blot. Results: Oral TMAO administration resulted in significantly reduced neurite density in several regions of the brain. Amyloid-β plaque mean intensity was reduced, while plaque count and size remained unaltered. Proteomics analysis revealed that TMAO treatment impacted the expression of 30 proteins (1.5-fold cut-off) in 5XFAD mice, including proteins known to influence neuronal health and amyloid-β precursor protein processing. TMAO treatment did not alter astrocyte and microglial response nor cortical synaptic protein expression. Conclusion: These data suggest that elevated plasma TMAO impacts AD pathology via reductions in neurite density.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3