Empowering the SDM-RDFizer tool for scaling up to complex knowledge graph creation pipelines1

Author:

Iglesias Enrique1,Vidal Maria-Esther123,Collarana Diego4,Chaves-Fraga David5

Affiliation:

1. L3S Research Center Germany, Hannover, Germany

2. Leibniz University, Hannover, Germany

3. TIB Leibniz Information Centre for Science and Technology, Hannover, Germany

4. University of Bonn, Fraunhofer FIT, Germany

5. Grupo de Sistemas Intelixentes, Universidade de Santiago de Compostela, Spain

Abstract

The significant increase in data volume in recent years has prompted the adoption of knowledge graphs as valuable data structures for integrating diverse data and metadata. However, this surge in data availability has brought to light challenges related to standardization, interoperability, and data quality. Knowledge graph creation faces complexities from large data volumes, data heterogeneity, and high duplicate rates. This work addresses these challenges and proposes data management techniques to scale up the creation of knowledge graphs specified using the RDF Mapping Language (RML). These techniques are integrated into SDM-RDFizer, transforming it into a two-fold solution designed to address the complexities of generating knowledge graphs. Firstly, we introduce a reordering approach for RML triples maps, prioritizing the evaluation of the most selective maps first to reduce memory usage. Secondly, we employ an RDF compression strategy, along with optimized data structures and novel operators, to prevent the generation of duplicate RDF triples and optimize the execution of RML operators. We assess the performance of SDM-RDFizer through established benchmarks. The evaluation showcases the effectiveness of SDM-RDFizer compared to state-of-the-art RML engines, emphasizing the benefits of our techniques. Furthermore, the paper presents real-world projects where SDM-RDFizer has been utilized, providing insights into the advantages of declaratively defining knowledge graphs and efficiently executing these specifications using this engine.

Publisher

IOS Press

Reference67 articles.

1. S. Abiteboul, P. Buneman and D. Suciu, Data on the Web: From Relations to Semistructured Data and XML, Morgan Kaufmann, 1999. ISBN 1-55860-622-X.

2. Knowledge graphs for enhancing transparency in health data ecosystems;Aisopos;Semantic Web,2023

3. Morph-KGC: Scalable knowledge graph materialization with mapping partitions;Arenas-Guerrero;Semantic Web,2024

4. J. Arenas-Guerrero, M. Scrocca, A. Iglesias-Molina, J. Toledo, L. Pozo-Gilo, D. Dona˜, O. Corcho and D. Chaves-Fraga, Knowledge graph construction with R2RML and RML: An ETL system-based overview, in: Proceedings of the 2nd International Workshop on Knowledge Graph Construction Co-Located with 18th Extended Semantic Web Conference (ESWC 2021), Online, June 6, 2021, D. Chaves-Fraga, A. Dimou, P. Heyvaert, F. Priyatna and J.F. Sequeda, eds, CEUR Workshop Proceedings, Vols 2873, CEUR-WS.org, 2021, https://ceur-ws.org/Vol-2873/paper11.pdf.

5. Knowledge graph construction with a façade: A unified method to access heterogeneous data sources on the web;Asprino;ACM Trans. Internet Techn.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3