Knowledge graphs for enhancing transparency in health data ecosystems1

Author:

Aisopos Fotis1,Jozashoori Samaneh2,Niazmand Emetis2,Purohit Disha2,Rivas Ariam2,Sakor Ahmad2,Iglesias Enrique2,Vogiatzis Dimitrios13,Menasalvas Ernestina4,Rodriguez Gonzalez Alejandro4,Vigueras Guillermo4,Gomez-Bravo Daniel4,Torrente Maria5,Hernández López Roberto5,Provencio Pulla Mariano5,Dalianis Athanasios6,Triantafillou Anna6,Paliouras Georgios1,Vidal Maria-Esther2

Affiliation:

1. Institute of Informatics & Telecommunications, National Centre for Scientific Research “Demokritos”, Greece

2. Leibniz University of Hannover and L3S Research Center and TIB Leibniz Information Centre for Science and Technology, Germany

3. American College of Greece, Deree, Greece

4. Universidad Politécnica de Madrid, Spain

5. Medical Oncology Department, Puerta de Hierro University Hospital, Servicio Madrileño de Salud, Spain

6. Innovation Lab, Athens Technology Center, Greece

Abstract

Tailoring personalized treatments demands the analysis of a patient’s characteristics, which may be scattered over a wide variety of sources. These features include family history, life habits, comorbidities, and potential treatment side effects. Moreover, the analysis of the services visited the most by a patient before a new diagnosis, as well as the type of requested tests, may uncover patterns that contribute to earlier disease detection and treatment effectiveness. Built on knowledge-driven ecosystems, we devise DE4LungCancer, a health data ecosystem of data sources for lung cancer. In this data ecosystem, knowledge extracted from heterogeneous sources, e.g., clinical records, scientific publications, and pharmacological data, is integrated into knowledge graphs. Ontologies describe the meaning of the combined data, and mapping rules enable the declarative definition of the transformation and integration processes. DE4LungCancer is assessed regarding the methods followed for data quality assessment and curation. Lastly, the role of controlled vocabularies and ontologies in health data management is discussed, as well as their impact on transparent knowledge extraction and analytics. This paper presents the lessons learned in the DE4LungCancer development. It demonstrates the transparency level supported by the proposed knowledge-driven ecosystem, in the context of the lung cancer pilots of the EU H2020-funded project BigMedilytic, the ERA PerMed funded project P4-LUCAT, and the EU H2020 projects CLARIFY and iASiS.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference54 articles.

1. The dark side of data ecosystems: A longitudinal study of the damd project;Aaen;European Journal of Information Systems,2021

2. The comparative efficacy and safety of the angiotensin receptor blockers in the management of hypertension and other cardiovascular diseases;Abraham;Drug Saf,2015

3. Enhancing answer completeness of SPARQL queries via crowdsourcing;Acosta;J. Web Semant.,2017

4. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z. Ives, Dbpedia: A nucleus for a web of open data, in: Proceedings of ISWC + ASWC, 2007, pp. 722–735.

5. E.A. Balas, M.M. Vernon, F. Magrabi, L.T. Gordon, J. Sexton et al., Big data clinical research: Validity, ethics, and regulation, in: MedInfo, 2015, pp. 448–452.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3