PAPAYA: A library for performance analysis of SQL-based RDF processing systems

Author:

Ragab Mohamed12,Adidarma Adam Satria3,Tommasini Riccardo14

Affiliation:

1. Computer Science Institute, University of Tartu, Tartu, Estonia

2. School of Electronics and Computer Science, Southampton University, Southampton, United Kingdom

3. Sepuluh Nopember Institute of Technology, Surabaya, Indonesia

4. LIRIS Lab INSA de Lyon, Villeurbanne, France

Abstract

Prescriptive Performance Analysis (PPA) has shown to be more useful than traditional descriptive and diagnostic analyses for making sense of Big Data (BD) frameworks’ performance. In practice, when processing large (RDF) graphs on top of relational BD systems, several design decisions emerge and cannot be decided automatically, e.g., the choice of the schema, the partitioning technique, and the storage formats. PPA, and in particular ranking functions, helps enable actionable insights on performance data, leading practitioners to an easier choice of the best way to deploy BD frameworks, especially for graph processing. However, the amount of experimental work required to implement PPA is still huge. In this paper, we present PAPAYA,11 https://github.com/DataSystemsGroupUT/PAPyA a library for implementing PPA that allows (1) preparing RDF graphs data for a processing pipeline over relational BD systems, (2) enables automatic ranking of the performance in a user-defined solution space of experimental dimensions; (3) allows user-defined flexible extensions in terms of systems to test and ranking methods. We showcase PAPAYA on a set of experiments based on the SparkSQL framework. PAPAYA simplifies the performance analytics of BD systems for processing large (RDF) graphs. We provide PAPAYA as a public open-source library under an MIT license that will be a catalyst for designing new research prescriptive analytical techniques for BD applications.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3