Affiliation:
1. King Abdullah University of Science and Technology
2. Saudi Aramco
Abstract
Distributed SPARQL engines promise to support very large RDF datasets by utilizing shared-nothing computer clusters. Some are based on distributed frameworks such as MapReduce; others implement proprietary distributed processing; and some rely on expensive preprocessing for data partitioning. These systems exhibit a variety of trade-offs that are not well-understood, due to the lack of any comprehensive quantitative and qualitative evaluation. In this paper, we present a survey of 22 state-of-the-art systems that cover the entire spectrum of distributed RDF data processing and categorize them by several characteristics. Then, we select 12 representative systems and perform extensive experimental evaluation with respect to preprocessing cost, query performance, scalability and workload adaptability, using a variety of synthetic and real large datasets with up to 4.3 billion triples. Our results provide valuable insights for practitioners to understand the trade-offs for their usage scenarios. Finally, we publish online our evaluation framework, including all datasets and workloads, for researchers to compare their novel systems against the existing ones.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献