Comparative deep learning studies for indirect tunnel monitoring with and without Fourier pre-processing

Author:

Rosso Marco Martino1,Aloisio Angelo2,Randazzo Vincenzo1,Tanzi Leonardo1,Cirrincione Giansalvo3,Marano Giuseppe Carlo1

Affiliation:

1. DISEG, Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Turin, Italy

2. DICEAA, Civil Environmental and Architectural Engineering Department, University of L’Aquila, L’Aquila, Italy

3. Laboratoire des Technologies Innovantes (LTI), University of Picardie Jules Verne, Amiens, France

Abstract

In the last decades, the majority of the existing infrastructure heritage is approaching the end of its nominal design life mainly due to aging, deterioration, and degradation phenomena, threatening the safety levels of these strategic routes of communications. For civil engineers and researchers devoted to assessing and monitoring the structural health (SHM) of existing structures, the demand for innovative indirect non-destructive testing (NDT) methods aided with artificial intelligence (AI) is progressively spreading. In the present study, the authors analyzed the exertion of various deep learning models in order to increase the productivity of classifying ground penetrating radar (GPR) images for SHM purposes, especially focusing on road tunnel linings evaluations. Specifically, the authors presented a comparative study employing two convolutional models, i.e. the ResNet-50 and the EfficientNet-B0, and a recent transformer model, i.e. the Vision Transformer (ViT). Precisely, the authors evaluated the effects of training the models with or without pre-processed data through the bi-dimensional Fourier transform. Despite the theoretical advantages envisaged by adopting this kind of pre-processing technique on GPR images, the best classification performances have been still manifested by the classifiers trained without the Fourier pre-processing.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software

Reference96 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3