Evaluation of Infrared Thermography Dataset for Delamination Detection in Reinforced Concrete Bridge Decks

Author:

Ichi Eberechi1,Dorafshan Sattar1ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering & Mine, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, ND 58202-8115, USA

Abstract

Structural health monitoring and condition assessment of existing bridge decks is a growing challenge. Conventional manned inspections are costly, labor-intensive, and often risky to execute. Sub-surface delamination, a leading cause of deck replacement, can be autonomously and objectively detected using infrared thermography (IRT) data with developed deep learning AI models to address some of the limitations associated with manned inspection. As one of the most promising classifiers, deep convolutional neural networks (DCNNs) have not been utilized to their fullest potential for delamination detection, arguably due to the scarcity of realistic ground truth datasets. In this study, a common encoder–decoder semantic segmentation-based DCNN is adapted through domain adaptation. The model was tuned and trained on a publicly available dataset to detect subsurface delamination in IRT data collected from in-service bridge decks. The authors investigated the effect of dataset augmentation, class imbalance, the number of classes, and the effect of background removal in the training dataset, resulting in an overall number of seventy-five UNET models. Four out of five bridges were adopted for training and validation, and the fifth bridge was for testing. Most models averaged 80 iterations, and the training progress finally reached a training accuracy of 75% with a loss of about 0.6 without any overfitting. The result showed a substantial difference in the minimum and maximum values for the evaluated performance metrics (0.447 and 0.773 for global accuracy, 0.494 and 0.657 for mean accuracy, 0.239 and 0.716 for precision, 0.243 and 0.558 for true positive rate (TPR), 0.529 and 0.899 for true negative rate (TNR), 0.282 and 0.550 for F1-score. The results also indicated that the models trained on the raw annotated balanced dataset performed best for half of the metrics. In contrast, the models trained on raw data (with no dataset enhancement) performed better when only global accuracy was considered.

Publisher

MDPI AG

Reference47 articles.

1. Lehman, M. (2022). Women in Infrastructure, Springer International Publishing.

2. Visual inspection of highway bridges;Graybeal;J. Nondestruct. Eval.,2002

3. Bridge inspection: Human performance, unmanned aerial systems, and automation;Dorafshan;J. Civ. Struct. Health Monit.,2018

4. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete;Dorafshan;Constr. Build. Mater.,2018

5. Review of nondestructive evaluation techniques of civil infrastructure;Rens;J. Perform. Constr. Facil.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3