Energy management optimization of hybrid electric vehicles based on deep learning model predictive control

Author:

Cao Yuan,Zhou Menghao

Abstract

In this paper, the hybrid electric vehicle (HEV) energy management optimization method is proposed based on deep learning (DL) model predictive control. Through empirical research combined with the questionnaire survey, this article not only provides a new perspective and practical basis but also improves the efficiency and accuracy of the model by improving the relevant algorithms. The study first analyzes the importance of HEV energy management and reviews the existing literature. Then, the optimization method of HEV energy management based on the deep learning model is introduced in detail, including the composition of energy management for hybrid electric vehicles, the structure and working principle of the deep learning model, especially the backpropagation neural network (BPNN) and the convolutional neural network (CNN), and the steps of application of deep learning in energy management. In the experimental part, questionnaire data from 1,500 consumers were used to design the HEV energy management optimization scheme, and consumers’ attitudes and preferences towards HEV energy optimization were discussed. The experimental results show that the proposed model can predict HEV energy consumption under different road conditions (urban roads, highways, mountain areas, suburban areas, and construction sites), and the difference between the average predicted energy consumption and the actual energy consumption is between 0.1KWH and 0.3KWH, showing high prediction accuracy. In addition, the deep learning-based energy management strategy outperforms traditional control strategies in terms of fuel consumption (6.2 L/100 km), battery charge and discharge times (814), battery life, and CO2 emissions, significantly improving the efficiency of HEV energy. These results demonstrate the great potential and practical application value of deep learning models in the optimization of energy management of HEVs, helping to drive the development of more sustainable and efficient transportation systems.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3