An Energy Management Strategy for a Super-Mild Hybrid Electric Vehicle Based on a Known Model of Reinforcement Learning

Author:

Yin Yanli1ORCID,Ran Yan1,Zhang Liufeng1,Pan Xiaoliang2,Luo Yong3ORCID

Affiliation:

1. School of Mechatronics & Automobile Engineering, Chongqing Jiao Tong University, Chongqing 400054, China

2. Chongqing Changan Automobile Stock Co., Ltd., Chongqing 400054, China

3. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China

Abstract

For global optimal control strategy, it is not only necessary to know the driving cycle in advance but also difficult to implement online because of its large calculation volume. As an artificial intelligent-based control strategy, reinforcement learning (RL) is applied to an energy management strategy of a super-mild hybrid electric vehicle. According to time-speed datasets of sample driving cycles, a stochastic model of the driver’s power demand is developed. Based on the Markov decision process theory, a mathematical model of an RL-based energy management strategy is established, which assumes the minimum cumulative return expectation as its optimization objective. A policy iteration algorithm is adopted to obtain the optimum control policy that takes the vehicle speed, driver’s power demand, and state of charge (SOC) as the input and the engine power as the output. Using a MATLAB/Simulink platform, CYC_WVUCITY simulation model is established. The results show that, compared with dynamic programming, this method can not only adapt to random driving cycles and reduce fuel consumption of 2.4%, but also be implemented online because of its small calculation volume.

Funder

Scientific and Technology Research Program of Chongqing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modelling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3