Multicriteria decision making based optimum virtual machine selection technique for smart cloud environment

Author:

Singh Raman1,Singh Maninder1,Garg Sheetal1,Perl Ivan2,Kalyonova Olga2,Penskoi Aleksandr2

Affiliation:

1. Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India. E-mails: raman.singh@thapar.edu, msingh@thapar.edu, sheetalgarg001@gmail.com

2. Faculty of Software Engineering and Computer Systems, ITMO University, Saint Petersburg, Russian Federation. E-mails: ivan.perl@corp.ifmo.ru, ovkalyonova@corp.ifmo.ru, aleksandr.penskoi@gmail.com

Abstract

In the popular field of cloud computing, millions of job requests arrive at the data centre for execution. The job of the data centre is to optimally allocate virtual machines (VMs) to these job requests in order to use resources efficiently. In the future smart cities, huge amount of job requests and data will be generated by the Internet of Things (IoT) devices which will influence the designing of optimum resource management of smart cloud environments. The present paper analyses the performance efficiency of the data centre with and without job request consolidation. First, the work load performance of the data centre was analysed without job request consolidation, exhibiting that the job requests to VM assignment was highly imbalanced, and only 5% of VMs were running with a load factor of more than 70%. Then, the technique for order of preference by similarity to ideal solution-based VM selection algorithm was applied, which was able to select the best VM using parameters such as the provisioned or available central processing unit capacity, provisioned or available memory capacity, and state of machine (running, hibernated, or available). The Bitbrains dataset consisting of 1750 VMs was used to analyse the performance of the proposed methodology. The analysis concluded that the proposed methodology was capable of serving all job requests using less than 24% VMs with improved load efficiency. The fewer number of VMs with an improved load factor guarantees energy saving and an increase in the overall running efficiency of the smart data centre environment.

Publisher

IOS Press

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3