Clustering electricity market participants via FRM models

Author:

Gülcü Ayla,Çalişkan Sedrettin

Abstract

Collateral mechanism in the Electricity Market ensures the payments are executed on a timely manner; thus maintains the continuous cash flow. In order to value collaterals, Takasbank, the authorized central settlement bank, creates segments of the market participants by considering their short-term and long-term debt/credit information arising from all market activities. In this study, the data regarding participants’ daily and monthly debt payment and penalty behaviors is analyzed with the aim of discovering high-risk participants that fail to clear their debts on-time frequently. Different clustering techniques along with different distance metrics are considered to obtain the best clustering. Moreover, data preprocessing techniques along with Recency, Frequency, Monetary Value (RFM) scoring have been used to determine the best representation of the data. The results show that Agglomerative Clustering with cosine distance achieves the best separated clustering when the non-normalized dataset is used; this is also acknowledged by a domain expert.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3