Author:
Gülcü Ayla,Çalişkan Sedrettin
Abstract
Collateral mechanism in the Electricity Market ensures the payments are executed on a timely manner; thus maintains the continuous cash flow. In order to value collaterals, Takasbank, the authorized central settlement bank, creates segments of the market participants by considering their short-term and long-term debt/credit information arising from all market activities. In this study, the data regarding participants’ daily and monthly debt payment and penalty behaviors is analyzed with the aim of discovering high-risk participants that fail to clear their debts on-time frequently. Different clustering techniques along with different distance metrics are considered to obtain the best clustering. Moreover, data preprocessing techniques along with Recency, Frequency, Monetary Value (RFM) scoring have been used to determine the best representation of the data. The results show that Agglomerative Clustering with cosine distance achieves the best separated clustering when the non-normalized dataset is used; this is also acknowledged by a domain expert.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献