Transactional data-based customer segmentation applying CRISP-DM methodology: A systematic review
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s42488-023-00085-x.pdf
Reference113 articles.
1. Abbasimehr H, Shabani M (2019) A new methodology for customer behavior analysis using time series clustering: A case study on a bank’s customers. Kybernetes. https://doi.org/10.1108/K-09-2018-0506
2. Abbasimehr H, Shabani M (2021) A new framework for predicting customer behavior in terms of RFM by considering the temporal aspect based on time series techniques. J Ambient Intell Humaniz Comput 12:515–531
3. Abbasimehr H, Setak M, Soroor J (2013) A framework for identification of high-value customers by including social network based variables for churn prediction using neuro-fuzzy techniques. Int J Prod Res 51:1279–1294. https://doi.org/10.1080/00207543.2012.707342
4. Abdi F, Abolmakarem S (2019) Customer Behavior Mining Framework (CBMF) using clustering and classification techniques. J Ind Eng Int. https://doi.org/10.1007/s40092-018-0285-3
5. Akhondzadeh-Noughabi E, Albadvi A (2015) Mining the dominant patterns of customer shifts between segments by using top-k and distinguishing sequential rules. Manag Decis 53:1976–2003. https://doi.org/10.1108/MD-09-2014-0551
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A dynamic approach for brand innovation strategy’s implementation timing considering consumer purchase intention;Journal of Data, Information and Management;2024-07-24
2. Machine learning model (RG-DMML) and ensemble algorithm for prediction of students’ retention and graduation in education;Computers and Education: Artificial Intelligence;2024-06
3. Technology-mediated method for prediction of global government investment in education toward sustainable development and aid using machine learning and classification;2023 IEEE Global Humanitarian Technology Conference (GHTC);2023-10-12
4. Predictive Maintenance in the Industrial Sector: A CRISP-DM Approach for Developing Accurate Machine Failure Prediction Models;2023 Fifth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA);2023-07-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3