Real-time facial expression recognition using smoothed deep neural network ensemble

Author:

Benamara Nadir Kamel1,Val-Calvo Mikel23,Álvarez-Sánchez Jose Ramón2,Díaz-Morcillo Alejandro4,Ferrández-Vicente Jose Manuel3,Fernández-Jover Eduardo5,Stambouli Tarik Boudghene1

Affiliation:

1. Laboratoire Signaux et Images, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP1505, El M’naouer, Oran, Algeria

2. Dpto. de Inteligencia Artificial, Universidad Nacional de Educación a Distancia, Madrid, Spain

3. Dpto. Electrónica, Tecnología de Computadoras y Proyectos, University Politécnica de Cartagena, Cartagena, Spain

4. Dpto. Tecnologías de la Información y las Comunicaciones, University Politécnica de Cartagena, Cartagena, Spain

5. Instituto de Bioingeniería, University Miguel Hernández, Elche, Spain

Abstract

Facial emotion recognition (FER) has been extensively researched over the past two decades due to its direct impact in the computer vision and affective robotics fields. However, the available datasets to train these models include often miss-labelled data due to the labellers bias that drives the model to learn incorrect features. In this paper, a facial emotion recognition system is proposed, addressing automatic face detection and facial expression recognition separately, the latter is performed by a set of only four deep convolutional neural network respect to an ensembling approach, while a label smoothing technique is applied to deal with the miss-labelled training data. The proposed system takes only 13.48 ms using a dedicated graphics processing unit (GPU) and 141.97 ms using a CPU to recognize facial emotions and reaches the current state-of-the-art performances regarding the challenging databases, FER2013, SFEW 2.0, and ExpW, giving recognition accuracies of 72.72%, 51.97%, and 71.82% respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3