A frequency-weighted energy operator and swarm decomposition for bearing fault diagnosis

Author:

Zhong Xianyou1,Xia Tianyi1,Zhao Yankun1,Zhao Xiao2

Affiliation:

1. Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang, China

2. School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang, China

Abstract

The weak fault characteristics of rolling bearings are difficult to identify due to strong background noise. To address this issue, a bearing fault detection scheme combining swarm decomposition (SWD) and frequency-weighted energy operator (FWEO) is presented. First, SWD is applied to decompose the bearing fault signal into single mode components. Then, a new evaluation index termed LEP is constructed by combining the advantages of envelope entropy, Pearson correlation coefficient and L-kurtosis, and it is utilized to choose the sensitive component containing the richest bearing fault characteristics. Finally, FWEO is employed for extracting the bearing fault features from the sensitive component. Simulation and experimental analyses indicate that the LEP index has better performance than the L-kurtosis index in determining the sensitive component. The method has the effect of suppressing noise and enhancing impulse characteristics, which is superior to the SWD-based envelope demodulation method.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3