An Improved Empirical Mode Decomposition Method Using Variable Window Median Filter for Early Fault Detection in Electric Motors

Author:

Karatoprak Erinc1ORCID,Seker Serhat1

Affiliation:

1. Faculty of Electrical and Electrical Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

This paper proposes an improved Empirical Mode Decomposition (EMD) method by using variable window size median filters during the Intrinsic Mode Functions (IMFs) generation. Compared to the traditional EMD, the improved EMD, namely, Median EMD (MEMD), helps to reduce mode-mixing providing an improvement in terms of separating the fundamental frequencies per IMF. The MEMD method applies the EMD to the signal and then applies a variable window size median filter to the resulting IMFs. A narrow window is used for high frequency components where a broader window is used for the lower frequency components. The filtered IMFs are then summed again and another round of EMD is applied to yield the improved MEMD IMFs. A test setup for accelerated aging of bearings in induction motors is used for the comparison of the traditional and the improved EMD methods with the goal of finding potential bearing defects in an induction motor. The potential defect at the early stage is compared with the faulty state and is used to extract the characteristics of the bearing damage that develops gradually. Comparing the EMD and MEMD, it is seen that MEMD is an improvement to EMD in terms of mode-mixing problem. The MEMD method demonstrated to have better performance compared to the traditional EMD for the extraction of the fault features from the healthy operational state of the motor.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3