Deformation Prediction of Dam Based on Optimized Grey Verhulst Model

Author:

Huang Changjun1ORCID,Zhou Lv2ORCID,Liu Fenliang1,Cao Yuanzhi1,Liu Zhong3,Xue Yun1

Affiliation:

1. School of Municipal and Surveying Engineering, Hunan City University, Yiyang 413000, China

2. School of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China

3. Hunan Remote Sensing Geological Survey and Monitoring Institute, Changsha 411000, China

Abstract

Dam deformation monitoring data are generally characterized by non-smooth and no-saturated S-type fluctuation. The grey Verhulst model can get better results only when the data series is non-monotonic swing development and the saturated S-shaped sequence. Due to the limitations of the grey Verhulst model, the prediction accuracy will be limited to a certain extent. Aiming at the shortages in the prediction based on the traditional Verhulst model, the optimized grey Verhulst model is proposed to improve the prediction accuracy of the dam deformation monitoring. Compared with those of the traditional GM (1,1) model, the DGM (2,1) model, and the traditional Verhulst (1,1) model, the experimental results show that the new proposed optimized Verhulst model has higher prediction accuracy than the traditional gray model. This study offers an effective model for dealing with the non-saturated fluctuation sequence to predict dam deformation under uncertain conditions.

Funder

natural science foundation of Hunan province of China

Hunan educational committee

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3