Paving the way for enriched metadata of linguistic linked data

Author:

di Buono Maria Pia1,Gonçalo Oliveira Hugo2,Barbu Mititelu Verginica3,Spahiu Blerina4,Nolano Gennaro1

Affiliation:

1. UniOr NLP Research Group, Department of Literary, Linguistics and Comparative Studies, University of Naples “L’Orientale”, Napoli, Italy

2. CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

3. Romanian Academy Research Institute for Artificial Intelligence, Bucharest, Romania

4. Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy

Abstract

The need for reusable, interoperable, and interlinked linguistic resources in Natural Language Processing downstream tasks has been proved by the increasing efforts to develop standards and metadata suitable to represent several layers of information. Nevertheless, despite these efforts, the achievement of full compatibility for metadata in linguistic resource production is still far from being reached. Access to resources observing these standards is hindered either by (i) lack of or incomplete information, (ii) inconsistent ways of coding their metadata, and (iii) lack of maintenance. In this paper, we offer a quantitative and qualitative analysis of descriptive metadata and resources availability of two main metadata repositories: LOD Cloud and Annohub. Furthermore, we introduce a metadata enrichment, which aims at improving resource information, and a metadata alignment to META-SHARE ontology, suitable for easing the accessibility and interoperability of such resources.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference56 articles.

1. F. Abromeit, C. Fäth and L. Glaser, Annohub – annotation metadata for linked data applications, in: Proceedings of the 7th Workshop on Linked Data in Linguistics (LDL-2020) @LREC2020, 2020, pp. 36–44.

2. EARTh: An environmental application reference thesaurus in the linked open data cloud;Albertoni;Semantic Web,2014

3. Roomba

4. The semantic web;Berners-Lee;Scientific American,2001

5. Linked Data - The Story So Far

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3