Abstract
Big data sets in conjunction with self-learning algorithms are becoming increasingly important in public administration. A growing body of literature demonstrates that the use of such technologies poses fundamental questions about the way in which predictions are generated, and the extent to which such predictions may be used in policy making. Complementing other recent works, the goal of this article is to open the machine’s black box to understand and critically examine how self-learning algorithms gain agency by transforming raw data into policy recommendations that are then used by policy makers. I identify five major concerns and discuss the implications for policy making.
Subject
Public Administration,Sociology and Political Science,Communication,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献